Bacajuga: Kegunaan Belajar Python yang Harus Kamu Tahu. 2. Java Profesi โผ Ruby on Rails developer, software engineer, data science engineers. Industri dan keahlian โผ web app development, networking, sysadmin and security. Contoh pemakaian: dipakai untuk mengembangkan Amazon dan Twitter.
Menguasai bahasa pemrograman Python merupakan salah satu skill yang harus dikuasai untuk berkarir di bidang Data Science. Pada tahun 2016, Phyton mengambil alih posisi R di Kaggle, platform utama untuk kompetisi Data tahun 2017, Python melampaui R dalam jajak pendapat tahunan KDNuggets tentang tools yang paling banyak digunakan oleh para ilmuwan data. Setahun kemudian, 66% Data Scientist mengklaim telah menggunakan Python setiap hari, menjadikannya bahasa nomor satu untuk para analis Data Science berharap tren ini terus berlanjut dengan peningkatan perkembangan di ekosistem Python. Berdasarkan Neuvoo, gaji rata-rata Data Scientist mencapai Rp 10-20 juta dalam itu diperkirakan akan terus meningkat, karena permintaan akan data scientist diperkirakan akan terus meningkat. Menurut Quanthub, selama tahun 2020, ada tiga kali lebih banyak posting pekerjaan di bidang Data Science dibanding pencarian pekerjaan untuk Data Science. Itu berarti permintaan ahli data jauh melebihi kini ada banyak cara untuk mempermudah kamu mempelajari Python dan dasar-dasar pemrograman lainnya. Namun perlu diingat, setiap langkah dalam proses ini perlu diiringi dengan kerja keras. Jika kamu memiliki komitmen dan mendedikasikan waktu untuk mempelajari Python. Maka skill kamu tidak hanya bertambah, tetapi juga berpotensi membawa karir kamu ke jenjang yang lebih menjadi seorang Data Scientist harus memiliki hard skill dan soft skill. Berikut lima langkah yang bisa kamu coba untuk meningkatkan keterampilan kamu dalam Data Dasar-Dasar PythonBelajar Dasar PythonSebelum mengenal Data Science, kamu bisa mulai dengan mempelajari dasar-dasar pemrograman Python. Salah satu tools penting yang bisa kamu gunakan adalah Jupyter Notebook yang telah dikemas dengan pustaka itu, kamu juga bisa belajar melalui komunitas Python atau Data Science. Dengan bergabung dalam komunitas, kamu dapat belajar sambil diskusi dengan para senior hingga membuka peluang kamu untuk berkarir di bidang Data Science. Menurut Society for Human Resource Management, rujukan karyawan mencapai 30% dari semua mempelajari dasar Python secara mendalam, kamu dapat membuat akun Kaggle, bergabung dengan grup Meetup lokal, dan berpartisipasi dalam komunitas Data Proyek Mini PythonMembuat Projek Data ScienceKamu dapat mencoba memprogram hal-hal seperti kalkulator untuk game online, atau program yang mengambil informasi cuaca dari Google di kota tempat kamu tinggal. Selain itu, kamu dapat membuat game dan aplikasi sederhana agar kamu terbiasa menggunakan projek mini seperti ini akan membantu kamu mempelajari Python. Program ini adalah standar untuk semua bahasa dan langkah awal bagi kamu untuk memahami dasar-dasar harus mulai mempelajari API dan web scraping. Selain membantu kamu belajar Python, web scraping akan berguna bagi kamu untuk mengumpulkan Library Data Science PythonLibrary Data ScienceTidak seperti beberapa bahasa pemrograman lainnya, dengan Python umumnya ada cara terbaik untuk melakukan sesuatu. Berikut beberapa database terbaik dalam pengerjaan data dengan adalah sebuah database yang membuat berbagai operasi matematika dan statistik menjadi lebih mudah. NumPy juga merupakan dasar bagi banyak fitur database adalah database Python yang dibuat khusus untuk memfasilitasi kerja dengan data. Ini merupakan inti dari banyak pekerjaan Data Science adalah database visualisasi yang berfungsi untuk membuat bagan dari data dengan cepat dan adalah library paling populer untuk pekerjaan machine learning dengan dan Pandas merupakan database yang paling banyak digunakan untuk mengelola dan mengolah data. Sedangkan Matplotlib adalah database visualisasi data yang membuat grafik seperti yang kamu temukan di Excel atau Google Portofolio Data Science Saat Mempelajari PythonMembuat Portofolio Data ScienceBagi para calon Data Scientist, portofolio adalah suatu keharusan. Projek-projek ini harus mencakup pekerjaan dengan beberapa kumpulan data yang berbeda dan harus memberikan wawasan menarik untuk para audience. Berikut beberapa jenis projek yang perlu Data Cleaning - Setiap projek yang melibatkan data kotor atau "tidak terstruktur" yang kamu bersihkan dan analisis akan memberi kesan tersendiri bagi calon pemberi kerja karena sebagian besar data perlu Data Visualization - Membuat visualisasi yang menarik dan mudah dibaca merupakan tantangan pemrograman dan desain. Namun jika kamu dapat melakukannya dengan benar, analisis kamu akan jauh lebih berkesan. Memiliki grafik yang terlihat bagus dalam sebuah projek akan membuat portofolio kamu banyak Machine Learning - Jika kamu bercita-cita untuk bekerja sebagai ahli data, maka kamu membutuhkan projek yang memamerkan keahlian Machine Learning dengan berfokus pada penggunaan algoritma populer yang harus bisa menyajikan data dengan jelas secara visual. Idealnya dalam format seperti Notebook Jupyter sehingga mudah dipahami oleh orang teknis maupun non-teknis. Di samping itu, portofolio kamu tidak membutuhkan tema tertentu. Kamu hanya perlu mengumpulkan kumpulan data yang kamu minati, lalu temukan cara untuk menggabungkannya. Namun, jika kamu ingin bekerja di perusahaan atau industri tertentu. Menampilkan projek yang relevan dengan industri tersebut dalam portofolio adalah ide yang menampilkan projek seperti ini akan membuat kamu berpotensi untuk melakukan kolaborasi dan menunjukkan kepada calon pemberi kerja bahwa kamu benar-benar berkomitmen untuk mempelajari Python dan skill pemrograman yang penting lainnya. Salah satu hal menarik tentang Data Science adalah portofolio kamu berfungsi ganda sebagai resume sekaligus menonjolkan keterampilan yang kamu miliki, seperti pemrograman Teknik Data Science Tingkat LanjutBelajar Data ScienceTerakhir, terus berusaha untuk mengasah keterampilan kamu. Perjalanan karir Data Science kamu akan penuh dengan pembelajaran terus-menerus. Untuk itu, ada kursus lanjutan yang dapat kamu ikuti untuk memastikan kamu telah menguasai semua tentu ingin terbiasa dengan model regresi, klasifikasi, dan pengelompokan k-means. Begitu juga dengan membuat Machine Learning - model bootstrap dan membuat jaringan neural menggunakan Science adalah bidang yang terus berkembang yang mencakup berbagai industri. Di samping ada permintaan yang terus meningkat, juga ada peluang eksponensial untuk belajar. Lanjutkan membaca, berkolaborasi, dan berdiskusi dengan orang lain untuk dapat mempertahankan minat dan keunggulan kompetitif dari waktu ke Lama Waktu Untuk Mempelajari Python?Belajar Python for Data ScienceSetelah membaca langkah-langkah ini, pertanyaan paling umum yang orang-orang tanyakan adalah "Berapa lama waktu yang dibutuhkan?". Ada banyak perkiraan berapa lama waktu yang dibutuhkan untuk mempelajari Python. Untuk Data Science secara khusus diperkirakan mulai dari tiga bulan hingga satu tahun praktik yang konsisten. Namun itu tergantung pada jadwal yang kamu inginkan serta waktu luang yang kamu dedikasikan untuk mempelajari Python dan kecepatan belajar yang kamu mana Tempat Belajar Python untuk Data Science?Tempat Belajar Data ScienceAda banyak tempat belajar Python di luar sana, namun jika kamu ingin mempelajarinya untuk Data Science, yang terbaik adalah memilih tempat yang secara khusus mengajarkan tentang Data ini disebabkan karena Python juga digunakan dalam berbagai ilmu pemrograman lainnya mulai dari pengembangan game hingga aplikasi seluler. Jika kamu ingin mempelajari Data Science secara mendalam. Metode belajar terbaik adalah tempat di mana kamu dapat belajar secara interaktif dengan kurikulum yang telah dirancang oleh para ahli sebagai pionir pelatihan coding intensif pertama di Indonesia kini telah membuka Bootcamp Data Science untuk kamu yang ingin menjadi seorang Data Scientist atau Data Analyst dalam 12 minggu. Di program ini kamu bisa belajar Data Science secara intensif dengan dibimbing instruktur materi-materi yang akan kamu pelajari meliputi Python, Database, Web Scraping Machine Learning, Deep Learning, hingga Big Data. Kamu juga akan mendapat fasilitas belajar seperti 1-on-1 mentoring, Engineering Empathy untuk melatih soft skill kamu, dan Career Coaching yang akan membantu kamu untuk mempersiapkan CV dan interview setelah lulus dari program 1 akan dimulai pada 28 Juni 2021. Kesempatan kamu untuk berkarir di bidang Data Science dengan ikut Bootcamp Data Science Hacktiv8. Daftar sekarang juga melalui
Davidis the content technical lead for Real Python. After leaving academia in 2015, David worked in various technical positions as a programmer and data scientist. In 2019, David joined Real Python full time to pursue his passion for education. He lead the charge on rewriting and updating the Python Basics curriculum to Python 3.๏ปฟData Scientist Learning Path - Kita telah merilis Data Science Curriculum di sini. Daftar Isi Apa itu Data Science dan Siapa itu Data Scientist? Apa yang dilakukan oleh seorang Data Scientist? Apa saja yang harus dikuasai oleh seorang Data Scientist? Learning Path Menjadi Data Scientist Data Scientist Toolbox Daftar Course 1. Pemrograman Menggunakan Python 2. Analisis dan Visualisasi Data Menggunakan Tableau 3. Teknik Visualisasi Data Menggunakan Google Data Studio 4. Pengolahan Database Menggunakan SQL 5. Probabilitas dan Statistika 6. Matematika Untuk Machine Learning 7. Data Wrangling 8. Teori Sampling 9. Machine Learning 10. Deep Learning Apa itu Data Science dan Siapa itu Data Scientist? Semua orang sedang membicarakan Data Science saat ini. Hal itu wajar sejak rilisnya suatu artikel Harvard Business Review HBR yang menobatkan Data Scientist sebagai "The Sexiest Job of the 21st Century" pada tahun 2012 silam. Tidak lama setelah itu pula menjamur berbagai Massive Open Online Course MOOC, konten artikel, video, podcast, serta pelatihan tentang Data Science. Lalu, apa itu sebenarnya Data Science? Dan siapakah Data Scientist? Data Science bisa dikatakan sebagai perpaduan antara ilmu komputer, statistika/matematika, dan domain expert tertentu. Ada suatu lelucon yang bahkan mengilustrasikan seorang Data Scientist sebagai seseorang yang lebih paham statistika lebih baik dari computer scientist dan yang lebih paham computer science daripada seorang statistician. Dalam bukunya, Data Science from Scratch, Joel Grus menitikberatkan Data Scientist sebagai seorang yang mengekstrasi insights dari messy data yang sangat besar saat ini di dunia digital. Tidak jauh berbeda pula dengan yang didefinisikan juga dalam buku Data Science Handbook karangan John D. Kelleher dan Brendan Tierney yang mengatakan bahwa Data Science merupakan ilmu mencakup seperangkat prinsip, definisi masalah, algoritma, dan proses untuk mengekstraksi non-obvius dan useful patterns dari suatu kumpulan data yang besar. Meskipun saat ini pada beberapa kasus di industri, boundary seorang dikatakan seorang Data Scientist juga tidak seberapa jelas. Beberapa ada yang mirip dengan jobdesk seorang Machine Learning Engineer seperti membuat suatu model prediksi dan ada pula yang lebih cenderung melakukan analisis dan ekstraksi insights dan membuat laporan. Masih belum paham definisi di atas? Langsung cek artikel-artikel di bawah ini. What Is Data Science, and What Does a Data Scientist Do? Introduction What Is Data Science? Doing Data Science by Cathy O'Neil, Rachel Schutt What is data science? by Matthew Brett What on earth is data science? by Cassie Kozyrkov A New Definition of Data Science in Academic Programs by Thu Vu Apa yang dilakukan oleh seorang Data Scientist? Melakukan analisis terhadap data Mengekstraksi suatu insight dari data Melakukan pemodelan machine learning/deep learning terhadap data untuk menemukan pola/pattern Apa saja yang harus dikuasai seorang Data Scientist? Ilmu statistika, stokastik, dan probabilitas Ilmu aljabar linier dan multivariate calculus Teknik visualisasi data Teknik storytelling Domain expert tertentu sesuai dengan case problem Machine learning Deep Learning Learning Path Menjadi Data Scientist Path untuk menjadi Data Science Expert Data Scientist Toolbox Bahasa pemrograman Python/R Coding environment Jupyter Notebook Jupyter Lab R Studio VS Code Visualization Software Tableau Google Data Studio Power BI Library Visualisasi Matplotlib Seaborn Bokeh ggplot plotly Dataframe processing Pandas PySpark SFrame Machine Learning Scikit-learn Machine Learning Library MLlib XGBoost H2O statsmodels Turi Create-Modelling Deep Learning framework Pytorch Tensorflow Keras MXNet Caffe Theano Torch Chainer Daftar Course 1. Pemrograman Menggunakan Python Mengapa ini penting? Bayangkan bagaimana kita bisa memvisualisasikan data 3-dimensi atau lebih menggunakan software yang telah tersedia di pasaran? Tidak semua software menyediakan fitur ini. Dari situlah programming menjadi penting. Programming berperan sebagai jembatan seorang data scientist untuk berkomunikasi dengan komputer sehingga memungkinkan mereka untuk dapat mengekseskusi berbagai perintah yg diinginkan secara custom. Sebagai contoh seperti di bawah ini Melakukan Exploratory Data Analysis EDA menggunakan Pandas & Maptlotlib Melakukan training model dengan Scikit-learn Apa saja yang akan dipelajari? Course ini mempelajari mengenai dasar-dasar pemrograman menggunakan Python untuk pemrosesan data. Skill dasar untuk menulis program menggunakan Python untuk Data Science seperti syntax dasar, operasi matematika dasar, logika, looping, struktur data, dan mengolah database menggunakan Python. Bagaimana mempelajari ini? ๐ Rekomendasi Textbook Python Data Science Handbook Automate the Boring Stuff with Python Python for Everybody Exploring Data in Python 3 Rekomendasi Referensi Lain ๐ก Blog Python - Tutorials Point ๐ Practice Lab Kaggle Python โถ๏ธ Video Tutorial Python, Kelas Terbuka [Youtube] Tutorial Python dari dasar sampai advanced Tutorial Python, Sekolah Koding [Youtube] Tutorial Python untuk pemula, membahas materi Python dari cara menginstal Python hingga membuat fungsi Python for Everybody, Dr. Charles "Chuck" Russell Severance [Website] [Youtube] Tutorial Python dari pengenalan hingga aplikasi untuk visualisasi dan pengolahan database Pythonic Belajar Tips dan Tricks Pemrograman Python, Indonesia Belajar [Youtube] playlist ini sesuai bagi yang pernah belajar Python namun membutuhkan tips dan tricks yang lebih dalam guna meningkatkan skill programming di Python. Topics Python Dasar Materi Memahami syntax dasar Operasi matematika Looping Struktur Data Python Materi Memahami string, list, dictionary, tuple, set Integer, float dalam Python Menggunakan Python Untuk Akses Database Materi Memahami cara untuk mengakses data txt atau xlsx menggunakan Python Visualisasi menggunakan Python Materi Dapat memvisualisasikan data menggunakan matplotlib, searborn, dll 2. Analisis dan Visualisasi Data Menggunakan Tableau Course ini mempelajari tentang bagaimana cara melakukan visualisasi data menggunakan aplikasi Tableau. Mengapa ini penting? Teknik visualisasi akan sangat berguna dalam mendapatkan wawasan/insight dari data seperti pengaplikasian pada Membuat dashboard untuk mengukur product performance Melakukan analisa data penjualan produk Apa saja yang akan dipelajari? Tableau operations, preparasi data, membuat grafik, dashboards, dan stories, melakukan kalkulasi. Bagaimana mempelajari ini? ๐ Rekomendasi Textbook Communicating Data with Tableau Designing, Developing, and Delivering Data Visualizations Storytelling with Data A Data Visualization Guide for Business Professionals Rekomendasi Referensi Lain ๐ก Blog Data Visualisation with Tableau โถ๏ธ Video Tableau Free Training Videos Topics Pengenalan Tableau Memahami interface dan operasi-operasi dalam Tableu serta langkah-langkah bekerja menggunakan Tableau. Preparasi Data Memahami bagaimana cara import dan join data. Visual Analytics Memahami fitur-fitur visual analytics seperti filter, sort, group, trend lines dan cara membuat dashboards. Kalkulasi dalam Tableu Memahami bagaimana cara melakukan kalkulasi dalam Tableau. 3. Teknik Visualisasi Data Menggunakan Google Data Studio Course ini mempelajari tentang bagaimana cara melakukan visualisasi data menggunakan aplikasi Google Data Studio. Mengapa ini penting? Teknik visualisasi akan sangat berguna dalam mendapatkan wawasan/insight dari data seperti pengaplikasian pada Membuat dashboard performa KPI tahunan Membuat dashboard penjualan produk di sebuah toko Apa saja yang akan dipelajari? Data Studio navigation, membuat reports, and calculated fields. Bagaimana mempelajari ini? ๐ Rekomendasi Textbook Storytelling with Data A Data Visualization Guide for Business Professionals Rekomendasi Referensi Lain ๐ก Blog The Ultimate Guide to Google Data Studio in 2020 ๐ Practice Lab Google Data Studio Example โถ๏ธ Video Introduction to Data Studio Topics Data Studio Dasar Memahami cara untuk mengoperasikan Google Data Studio dan membuat report sederhana. Data Studio Advanced Memahami fitur-fitur advanced dari Google Data Studio seperti filters dan calculated filed. 4. Pengolahan Database Menggunakan SQL Mengapa ini penting? Course ini mempelajari tentang database yang umum digunakan dan bagaimana cara melakukan operasi di dalamnya. Membuat database untuk menyimpan data di sebuah aplikasi Melakukan akses database untuk mengambil sebuah data Apa saja yang akan dipelajari? Course ini mempelajari mengenai dasar-dasar SQL untuk pemrosesan data yang berkaitan dengan Data Science. Skill dasar untuk menulis program menggunakan SQL untuk Data Science seperti syntax dasar, operasi dasar, logika, looping, struktur data, dan mengolah database. Bagaimana mempelajari ini? ๐ Rekomendasi Textbook Query Solutions and Techniques for Database Developers Optimization, Backups, and Replication Rekomendasi Referensi Lain ๐ก Blog SQL - Tutorials Point ๐ Practice Lab Kaggle SQL โถ๏ธ Video SQL Training Videos Topics SQL Data Memahami bagaimana cara untuk select columns, filter row, melakukan aggregation, sorting dan groupping. Story Telling Data Memahami cara untuk import dan join suatu visualisasi data untuk Business Professionals. 5. Probabilitas dan Statistika Mengapa ini penting? Course ini mempelajari tentang teori dari probabilitas dan statistika yang umum digunakan pada bidang data science. Pada pengaplikasiannya di industri course ini digunakan untuk mempelajari karakteristik data, kualitas data, dan hubungan antara variabel data dengan masalah bisnis. Apa saja yang akan dipelajari? Secara fundamental materi yang dipelajari adalah Probability & statistics essentials for data science. dengan rincian subcourse beserta kompetensi dasarnya sebagai berikut. Probabilitas Memahami fundamental probabilitas. Statistik Deskriptif Memahami konsep dasar dari rata-rata, median, modus, standar deviasi, dan variasi. Statistik Inferensial Memahami konsep dasar dari pengujian statistik. Bagaimana mempelajari ini? ๐ Rekomendasi Textbook All of Statistics A Concise Course in Statistical Inference Springer Texts in Statistics Practical Statistics for Data Scientists 50+ Essential Concepts Using R and Python Introduction to Probability The Elements of Statistical Learning Data Mining, Inference, and Prediction Rekomendasi Referensi Lain ๐ก Blog Part 1 Statistics and Probability in Data Science Data Science 2020 Part 2 Statistics and Probability in Data Science Data Science 2020 ๐ Practice Lab Python Statistics Fundamentals How to Describe Your Data โถ๏ธ Video Intro to Statistics 6. Matematika Untuk Machine Learning Course ini mempelajari tentang teori matematika yang digunakan pada metode machine learning. Mengapa ini penting? Berguna dalam merancang arsitektur machine learning/deep learning Digunakan untuk melakukan perhitungan evaluasi model machine learning Optimisasi algoritma machine learning Apa saja yang akan dipelajari? Konsep matematika dasar Linear algebra, Calculus and Vector calculus Bagaimana mempelajari ini? Topics Vector and Matrix Operations Memahami konsep dasar mengoperasikan table of data suatu Matrix or Vector. ๐ Buku Matrix Computations Probability and statistics The science of uncertainty โถ๏ธ Video MIT OCW Multivariable Calculus ๐ก Artikel A Gentle Introduction to Linear Algebra Mathematics for Machine Learning ๐ Lab Data Science and Linear Algebra Fundamentals with Python, SciPy, & NumPy Linear Algebra Memahami aplikasi linear algebra dalam Data Science, sebagai contoh Principle Component Analysis PCA. ๐ Buku Introduction to Linear Algebra, Fifth Edition Gilbert Strang โถ๏ธ Video MIT OCW Linear Algebra Calculus and Derivatives Memahami fungsi optimasi menemukan local minima & maxima. โถ๏ธ Video MIT OCW Single Variable Calculus 7. Data Wrangling Course ini mempelajari tentang proses cleaning data guna untuk memudahkan akses, pemetaan dan analisa. Mengapa ini penting? Membersihkan atau mengubah format data sebelum dianalisa atau ditampilkan agar lebih mudah dimengerti. Apa saja yang akan dipelajari? Data Cleaning, Data Transformation dan Data Enrichment. Bagaimana mempelajari ini? ๐ Rekomendasi Textbook Data Wrangling with Python Tips and Tools to Make Your Life Easier Data Wrangling with Python Creating actionable data from raw sources Rekomendasi Referensi Lain ๐ก Blog Python - Tutorials Point Topics Data Wrangling dengan Python Melibatkan pemrosesan data dalam berbagai macam format seperti - merging, grouping dan councatenating. Python Data Structure Open source python library providing high-performance. 8. Teori Sampling Course ini mempelajari cara untuk mengambil sebagian data dari populasi, sehingga dalam melakukan pengujian tidak memakan waktu yang lama untuk mengetahui bagaimana cara melakukannya. Mengapa ini penting? Penggunaan training dan testing untuk pemodelan. Sering di gunakan di bidang akademisi untuk mengetahui sampling dalam pengujian. Industri yang membutuhkan pengembangan penelitian secara berkala juga banyak di butuhkan seperti sektor pertanian, manufaktur, pertambangan, kesehatan dsb. Apa saja yang akan dipelajari? Fundamental, Probability, dan Non-Probability Sampling. Bagaimana mempelajari ini? ๐ Rekomendasi Textbook Advanced Sampling Theory with Applications *download Advanced sampling theory with applications How Michael โselectedโ Amy. 2 Vols Rekomendasi Referensi Lain ๐ก Blog Sampling Methods for Data Science by Arthur Mello Sampling Techniques ๐ Practice Lab Datacamp Basic Statistics Datacamp Statistical Inference โถ๏ธ Video Introduction to Sampling Distributions Topics Probability Sampling Setiap elemen populasi memiliki probabilitas yang diketahui dan bukan nol untuk berada dalam sampel. Non-Probability Sampling Beberapa elemen populasi mungkin tidak dipilih dan ada risiko besar sampel tidak mewakili populasi secara keseluruhan. 9. Machine Learning Course ini mempelajari jenis-jenis algoritma machine learning dan aplikasinya, serta bagaimana membuat dan mengembangkan model. Mengapa ini penting? Regression untuk memprediksi data kontinu seperti harga rumah. Classification untuk memisahkan data menurut kelasnya seperti klasifikasi spesies bunga atau churn prediction. Clustering untuk membuat segmentasi berdasarkan karakteristik data seperti customer segmentation. Metode-metode seperti cross validation, parameter tuning, feature engineering dapat berguna untuk meningkatkan performa model. Apa saja yang akan dipelajari? Jenis-jenis model machine learning beserta keunggulannya dan teknik-teknik untuk meningkatkan performa model. Bagaimana mempelajari ini? ๐ Rekomendasi Textbook Machine Learning - Tom Mitchel Rekomendasi Referensi Lain ๐ก Blog A Tour of Machine Learning Algorithms ๐ Practice Lab Introduction to Machine Learning Kaggle Intermediate to Machine Learning Kaggle Feature Engineering Kaggle Topics Supervised Learning Memahami model regression dan model classification dan cara melakukan training dan testing pada model. Unsupervised Learning Memahami model clustering dan cara melakukan evaluasi pada model. Model Evaluation Memahami berbagai macam evaluasi model dan teknik untuk meningkatkan performa model. 10. Deep Learning Course ini mempelajari tentang dasar-dasar modul yang menyusun deep learning serta mengapa deep learning sangat powerful dibandingkan machine learning biasa serta pada kasus-kasus apa deep learning tepat untuk diaplikasikan Mengapa ini penting? Ekstraksi fitur pada data non-linear Deteksi dan rekognisi suatu informasi visual Rekognisi speech Analisis sentimen Apa saja yang akan dipelajari? Konsep Deep Learning sebagai susunan modul-modul, operasi pada Neural Networks, cara training Deep Learning, modul-modul state-of-the-art dari Deep Learning seperti Convolutional Neural Networks CNNs, Recurrent Neural Networks RNNs, dll. Bagaimana mempelajari ini? ๐ Rekomendasi Textbook Deep Learning - Ian Goodfellow A Tour of Machine Learning Algorithms Deep Learning with Pytorch [pdf] Neural Networks and Deep Learning A Textbook Rekomendasi Referensi Lain ๐ก Blog Colah's Blog PyImageSearch Paperspace Computer Vision Articles PyImageSearch Machine Learning Paperspace NLP Articles ๐ Practice Lab Intro to Deep Learning Kaggle Computer Vision Natural Language Processing โถ๏ธ Video Neural Networks for Machine Learning Deep Learning Lecture - Nando de Frietas Deep Learning Lectures - DeepMind Optimization for Machine Learning - Deepmind DeepMind x UCL Deep Learning Lecture Series 2020 Convolutional Neural Networks for Image Recognition Sequences and Recurrent Networks Topics Neural Networks Memahami modul dan konsep formalisasi pada Neural Networks. Optimization dan Backpropagation Memahami cara kerja backpropagation dan memahami berbagai macam metode optimasi untuk melatih arsitektur Deep Learning. Convolutional Neural Networks Memahami hyperparameters CNNs seperti stride, padding, kernel size, serta jenis-jenis konvolusi dan aplikasinya. Sequence Models Memahami berbagai macam sequence models seperti RNNs, Gated Recurrent Units GRUs, Transformer dan aplikasinya.
Untukberkarir sebagai seorang data scientist dan data analyst, belajar microsoft excel adalah langkah utama yang tepat bagi kamu pemula yang ingin berkarir sebagai data analyst dan data scientist namun tidak memiliki background STEM tanpa perlu memulai dari materi koding terlebih dahulu. Kamu bisa belajar excel dari nol dengan memulai mempelajari rumus excel dasar.
Download Free PDFDownload Free PDFE-Book Belajar Pemrograman Python DasarE-Book Belajar Pemrograman Python DasarE-Book Belajar Pemrograman Python DasarE-Book Belajar Pemrograman Python Dasarchoerul arifin
Selainitu juga kamu akan mempelajari bahasa pemrograman SQL, R, dan Python secara fundamental beserta implementasinya. Menerapkan bahasa pemrograman untuk data science yang meliputi SQL, R, dan Python; Mengidentifikasi tools yang diperlukan dalam SQL, R, dan Python PDF Python Package dan Tips Menggunakannya 0:09:00;
Tahukah anda salah satu profesi andalan masa kini adalah ahli pengolah informasi dalam jumlah besar. Pekerjaan ini mengandaikan penguasaan salah satu bahasa promgraman. Menjawab peluang itu, belajar data science dengan python akan menjadi ulasan artikel dengan profesi ini, segera daftarkan diri Anda bersama Genius Education. Tempat belajar data science masa kini. Menghadirkan para pengajar handal bahkan sedang bekerja di perusahaan besar seperti Tokopedia dan Data SciencePertanyaan awal t mendasar bagi para pemula. Artinya sebelum mempelajarinya, penting diketahui konsep dasarnya. Secara singkat, date science merupakan bidang yang mempelajari pengolahan informasi-informasi, lalu dianalisis kemudian ditarik suatu kesimpulan lewa algoritma sebagai titik tolak pengambilan keputusan. Namun bidangnya mencakup kemahiran beberapa aspek sepertiBahasa pemrograman; skill dasar yang paling penting untuk dipenuhi sebelum terjun langsung ke data science. Python salah satu rujukan popular untuk belajar profesi ilmu hitung karena selalu berkaitan dengan hitung-menghitung. Tentu paling dasar adalah logika serta konsep kerja. Misalnya harus bisa membaca perbedaan terhadap pola tertentu. Apakah mengalami kenaikan atau penurunan. Persisnya kemampuan matematis dalam kasus seperti ini. Bukan sekadar belajar menghitung perkalian atau pengurangan angka skill membaca serta membuat informasi dalam bagan. Sederhananya adalah kemampuan mengelompokkan date menurut kategori-kategori tertentu. Urgensi Data ScientistPertanyaan selanjutnya adalah mengapa belajar bidang ini menjadi penting. Berikut akan disampaikan beberapa poin urgensi ilmu atau profesi tersebutMerebaknya online market atau penjualan via website. Maka dari itu baik bisnis skala kecil maupun skala besar ingin kepastian menentukan setiap keputusan. Maka dari itu, belajar data science menjadi salah satu keputusan. Sekalipun tidak tepat seratus persen namun setidaknya mendekati, karena berdasarkan analisis yang melibatkan beberapa bekerja. Dengan belajar data science, para pelaku usaha akan banyak dipermudah. Jika sebelumnya cara analisa konvensional membutuhkan waktu lama maka sekarang dapat lebih efektif dan perkembangan bisnis. Seperti tiga manfaat sebelumnya, hal terakhir ini sebagai tujuan. Artinya, metode data scientist, pengambilan keputusan hampir selalu akurat atau mendekati kebenaran.+Dapatkan kesempatanmemenangkan hadiah iPhone dan hadiah lainnyaMengapa harus PythonMungkin orang bertanya-tanya apa saja kelebihannya dibandingkan bahasa pemrograman lain. Berikut akan dijelaskan keunggulan-keunggulannya. Ini menjadi penting agar benar-benar memahami relasi python dan data science. Antara lain sebagai berikutMudah dalam mempelajarinya. Ciri yang diinginkan semua orang. Mempunyai struktur keyword serta penulisan code simple sehingga sangat membantu bagi pemula dalam proses belajar. Maka dari itu, python menjadi rujukan pertama dari sisi IoT atau Internet of Things. IoT sendiri merupakan sebutan bagi benda-platform yang berkoneksi satu sama lain melalui jaringan internet. Misalnya dalam konteks paling umum seperti data science, machine learning, date analytic serta lainnya. Python dalam arti ini bisa berkoneksi dengan platftorm baru seperti Netflix, Google, Instagram, dan aplikasi โOpen Sourceโ dan lintas platform. Open Source artinya dapat menggunakannya tanpa harus meminta izin atas lisensinya. Selain itu dapat dipakai di berbagai operation system seperti Linux, Mac Os, Windows, dan pemrograman paling familiar. Tidak dapat disangkal bahwa python menjadi coding terpopuler dibandingkan yang lainnya. Ini merupakan kekuatan karena Anda dapat dengan mudah menemukan berbagai penjelasan atau bertanya pada orang lain, baik itu secara langsung maupun bergabung pada komunitasnya. Cara Memulai Belajar Data ScienceBerikut akan disebutkan langkah-langkah mempelajarinyaKuasai dasar-dasar python. Sebagai bahasa rujukan utama, maka python harus dikuasai sebelum belajar data science. Artinya itu semacam fondasi pertama sebelum melanjutkan ke tahap dengan project sederhana. Hal paling penting dalam proses belajar adalah mempraktikkan secara langsung. Langkah tersebut, ilmu yang telah dipelajari dengan mudah diingat dan dipraktikkan untuk mengukur sejauh mana penguasaan library python khusus untuk data science. Bahasa pemrograman ini memiliki keistimewaan dibandingkan dengan coding lain. Python mempunyai beberapa library khusus untuk date base sehingga menunjang data science. Di antaranya; NumPy, Pandas, Matploptib, scikit-learn. Mempelajari hal-hal tersebut menjadi keharusaan sehingga proses pengerjaan berjalan portofolio selama proses belajar. Setelah melewati tahap-tahap di atas, artinya anda sudah cukup menguasainya. Sekarang saatnya bagaimana meyakinkan perusahaan di mana Anda bekerja nanti. Salah satu caranya adalah mulai dengan beberapa project. Beberapa rujukannya antara lain data cleaning project, visualization, machine learning, dan lainnya. Dengan bukti ini, nanti akan menjadi kekuatan dalam pencarian kerja sehingga perusahaan dapat mudah yakin pada kapabilitas Anda. Demikianlah seputar langkah belajar menjadi seorang data scientist serta bahasa pemrograman rujukannya. Genius Education adalah jawaban atas impiannya. Segera daftarkan diri untuk memulai kursus di sana! Whatโs a Rich Text element?The rich text element allows you to create and format headings, paragraphs, blockquotes, images, and video all in one place instead of having to add and format them individually. Just double-click and easily create and dynamic content editingA rich text element can be used with static or dynamic content. For static content, just drop it into any page and begin editing. For dynamic content, add a rich text field to any collection and then connect a rich text element to that field in the settings panel. Voila!ghgghghhjhjhhjhjhHow to customize formatting for each rich textHeadings, paragraphs, blockquotes, figures, images, and figure captions can all be styled after a class is added to the rich text element using the "When inside of" nested selector paragraphs, blockquotes, figures, images, and figure captions can all be styled after a class is added to the rich text element using the "When inside of" nested selector system.โ
ObbyFerryansyah Peserta kelas Python Data Science (Batch 21) & Python Analisa Opini Publik (Batch 22) "To be honest saya baru belajar python dari sanbercode. Metode belajarnya saya suka, jadi free kita yang atur tapi ada target juga per hari yang bikin kita bisa ataupun mau ga mau harus meluangkan waktu biar investasi di diri kita tidak jadi sia sia.Free download buku Pengantar Data Science dan Aplikasinya bagi Pemula. Apa itu Data Science Ilmu Data? Apa yang dipelajari pada bidang ilmu ini? Apa kaitan Machine Learning dan big data dengan Data Science? Apa yang dikerjakan para data scientist ilmuwan data? Mengapa data scientist menjadi profesi yang sangat dibutuhkan dan menjadi top job? Skill dan keahlian apa saja yang harus dikuasai data scientist? Dimana dapat belajar Data Science?Buku yang dipaparkan dengan paparan populer disertai contoh aplikasi Data Science dalam kehidupan sehari-hari ini dimaksudkan untuk menjawab pertanyaan-pertanyaan tersebut. Unduh PDF buku di sini Download Penerbit Unpar Press, ISBN 978-623-7879-15-2 E-book tersedia untuk diunduh gratis di sini Download Komentar terhadap bukuStephanus Abednego, kepala sekolah SMAK 1 BPK Penabur, Bandung Menarik sekali membaca berbagai paparan dalam buku ini. Isinya membuka cakrawala kita tentang pentingnya data pada saat ini, apalagi untuk masa yang akan datang. Tidak salah apa yang disampaikan oleh para ahli, ke depan siapa yang menguasai data dialah yang menjadi market leader. Hal ini sejalan dengan apa yang dilaporkan World Economic Forum pada โThe Future of Jobs Report 2020โ, yang memaparkan bahwa Data Scientist menjadi salah satu pekerjaan yang paling dibutuhkan di masa yang akan datang. Contoh-contoh yang diangkat dalam buku ini menggunakan bahasa yang sederhana sehingga dapat menjadi referensi yang baik, khususnya bagi para siswa-siswi SMA yang akan melanjutkan studi ke jenjang perguruan tinggi di bidang ini. Suryatin Setiawan, Senior Consultant and Coach, Business and Organization Digitalization, Penasihat Yayasan UNPAR, BandungBuku ini adalah produk akademis yang dihasilkan dari kolaborasi yang cantik antara dosen dengan dosen, dan dosen dengan mahasiswa. Ini bukan buku novel untuk dibaca seluruhnya dari awal sampai akhir, lalu selesai. Buku ini lebih menjadi pembuka jalan bagi pembaca yang ingin tahu tentang Data Science dan juga menjadi referensi bagi praktisi, dimana saat dibutuhkan buku bisa dibuka kembali untuk melihat kasus-kasus yang bisa dijawab oleh Data Science. Keunggulan buku ini adalah tidak hanya berisi teori semata tetapi juga praktek penerapan Data Sience pada beragam kasus yang besar maupun kasus kehidupan sehari-hari. Daftar Isi Buku Kata Pengantar v Sambutan Rektor Unviersitas Katolik Parahyangan vii Data Science bagi Indonesia ix Bagian Pertama xii Bab 1 Data Science dan Data Scientist 1 Data Abad 21 1 Apa itu Data Science? 3 Apa saja yang Dikerjakan Data Scientist? 5 Keahlian dan Skill Data Scientist 10 Era Industri dan Data Science 15 Kebutuhan Data Science 17 Informasi Bab-bab Buku 18 Referensi 20 Bab 2 Menjelang Ujian Ngebut Belajar atau Tidur? 21 Pendahuluan 21 Konsep Statistika 24 Pengumpulan Data dari Peserta Kuliah 30 Hasil Analisis Data 31 Kesimpulan 38 Referensi 39 Bab 3 Pengenalan Sistem Rekomendasi pada e-Commerce 41 Pendahuluan 41 Sistem Rekomendasi dan Collaborative Filtering 43 Data e-Commerce 46 Studi Kasus 50 Penutup 54 Referensi 55 Bab 4 Pencarian Keterkaitan Bahan Masakan dengan Teknik Clustering 57 Pendahuluan 57 Teknik Hierarchical Clustering 59 Data Resep Masakan 62 Studi Kasus 65 Penutup 70 Referensi 70 Bab 5 Analisis Data Penginderaan Jauh Satelit, Kasus Prediksi Panen Padi 73 Pendahuluan 73 Data Penginderaan Jauh Satelit 73 Analisis Data Satelit SPOT-4 untuk Prediksi Panen Padi 76 Penutup 84 Referensi 84 Bab 6 Penggalian Insights dari Data COVID-19 dengan Visualisasi, Studi Kasus Data Korea Selatan 85 Pendahuluan 85 Data COVID-19 di Korea Selatan 87 Bentuk-bentuk Visualisasi 88 Penggalian Insights 90 Penutup 107 Referensi 108 Bab 7 Prediksi Kualitas Tidur dari Data Wearable Device 111 Pendahuluan 111 Wearable Device 112 Konsep Dasar 114 Klasifikasi Data Wearable Device 119 Penutup 129 Referensi 129 Bab 8 Rekomendasi Film dengan Fuzzy Collaborative Filtering 131 Pendahuluan 131 User-based Collaborative Filtering 135 Algoritma Clustering Fuzzy c-Means 138 Hasil Penelitian Rekomendasi Film dengan Fuzzy Collaborative Filtering 143 Penutup 145 Referensi 146 Bab 9 Urun Daya Data Kepadatan Lalu Lintas 147 Pendahuluan 147 Pengukuran Kepadatan Lalu Lintas oleh Google Maps 148 Pemanfaatan Google Traffic untuk Penentuan Waktu Pergi dan Pulang 154 Referensi 158 Bagian Kedua 159 Bab 10 Teknologi Big Data 161 Pendahuluan 161 Seputar Big Data 161 Arsitektur Teknologi Big Data 167 Ekosistem Hadoop 169 Teknologi Big Data Komersial 174 Contoh Penggunaan Teknologi Big Data 179 Kesimpulan 180 Referensi 180 Bab 11 Pengumpulan Data Twitter dengan Teknologi Big Data 181 Pendahuluan 181 Studi Literatur 182 Pengumpul Data Twitter dengan Spark Streaming 194 Pengumpul Data Twitter dengan Kafka 199 Kesimpulan 203 Referensi 204 Bab 12 Algoritma Pengelompokan k-Means Paralel untuk Memproses Big Data 205 Pengelompokan Data 205 Manfaat Analisis Klaster 206 Algoritma Pengelompokan k-Means Non-Paralel 207 Algoritma k-Means Paralel untuk Big Data 211 Pengembangan Algoritma k-Means Paralel 217 Penutup 223 Referensi 225 Bab 13 Estimasi Dimensi Tubuh Manusia dengan Kinect 227 Pendahuluan 227 Microsoft Kinect 228 Principal Component Analysis 231 Regresi Linier 232 Metode Estimasi Dimensi Tubuh dan Hasilnya 233 Pembangunan Perangkat Lunak 238 Hasil Eksperimen 239 Kesimpulan 242 Referensi 242 Bab 14 Segmentasi Citra Menggunakan Algoritma Particle Swarm Optimization 245 Pendahuluan 245 Studi Literatur 247 Segmentasi Gambar dengan Algoritma PSO dan K-means 253 Eksperimen Segmentasi Gambar 255 Kesimpulan 260 Referensi 260 Biografi Editor dan Para Pengarang 263 Program Data Science UNPAR 265
Kumpulantutorial belajar Python dari dasar hingga mahir. Python adalah bahasa tingkat tinggi untuk backend, machine learning, AI, Dekstop, IoT, dll. Belajar Python #01: Mengenal Bahasa Pemrograman Python. Belajar Python #02: Persiapan Pemrograman Python di Windows. Belajar Python #03: Aturan Dasar Penulisan Sintaks Python.
Buku pembelajaran bahasa program phyton Discover the world's research25+ million members160+ million publication billion citationsJoin for free Bab 1 Aplikasi Python Awal perkembangan Python dilakukan oleh Guido van Rossum pada tahun 1990 di Stichting Mathematisch Centrum CWI, Amsterdam. Pada tahun 1995, Guido pindah ke CNRI di Virginia Amerika. Versi terakhir pada tahun 2000 dengan versi Pada tahun 2000, Guido dan para pengembang inti Python pindah ke yang merupakan sebuah perusahaan komersial dan membentuk BeOpen PythonLabs. Dari BeOpen PythonLabs inilah pengembangan Python Setelah mengeluarkan Python Guido dan beberapa anggota tim PythonLabs pindah ke DigitalCreations. Saat ini pengembangan Python terus dilakukan oleh sekumpulan pemrogram yang dikoordinir Guido dan Python Software Foundation. Python Software Foundation adalah sebuah organisasi non-profit yang dibentuk sebagai pemegang hak cipta intelektual Python sejak versi dan dengan demikian mencegah Python dimiliki oleh perusahaan komersial. Saat ini distribusi Python sudah mencapai versi dan versi Penggunaan nama Python dipilih oleh Guido sebagai nama bahasa ciptaannya karena kecintaan Guido pada acara televisi Monty Python's Flying Circus. Oleh karena itu seringkali ungkapan-ungkapan khas dari acara tersebut seringkali muncul dalam korespondensi antar pengguna Python. Berikut sejarah dari aplikasi python. โข Python โ Januari 1994 o Python โ 10 April 1995 o Python โ 12 Oktober 1995 o Python โ 25 Oktober 1996 o Python โ 31 Desember 1997 o Python โ 5 September 2000 โข Python โ 16 Oktober 2000 o Python โ 17 April 2001 o Python โ 21 Desember 2001 o Python โ 29 Juli 2003 o Python โ 30 Nopember 2004 o Python โ 19 September 2006 o Python โ 1 Oktober 2008 o Python โ 3 Juli 2010 โข Python โ 3 Desember 2008 o Python โ 27 Juni 2009 o Python โ 20 Februari 2011 o Python โ 29 September 2012 o Python โ 16 Maret 2014 o Python โ 13 September 2015 o Python โ 23 Desember 2016 o Python โ 27 Juni 2018 Python banyak digunakan untuk membuat berbagai macam program, seperti program CLI, Program GUI desktop, Aplikasi Mobile, Web, IoT, Game, Program untuk Hacking, dsb. Apa itu program CLI? Antarmuka baris perintah bahasa Inggris command-lineinterface, CLI adalah mekanisme interaksi dengan sistem operasi atau perangkat lunak komputer dengan mengetikkan perintah untuk menjalankan tugas tertentu. Bab 2 Instalasi Python Pada Bab 1 sudah dijelaskan bahwa Python dapat running dalam bentuk teks, desktop maupun web. Pada Bab 2 ini akan di jelaskan langkah langkah untuk instalasi python pada ketiga area tesebut. 1. Pycharm 2. Pemilihan Bit 2. Proses Instalasi 3. Proses penentuan folder instalasi 4. Instalasi option 5. Tahapan pembuatan shortcut Bab 3 Aturan Penulisan sintaks Sebagai contoh, berikut kode program dalam bahasa Cuntuk menampilkan teks โHello Worldโ include int mainvoid { printf"Hello World"; return 0; } Berikut kode program dalam bahasa Pascaluntuk menampilkan teks โHello Worldโ program hello_world; begin writeln'Hello World'; readln; end. Dan berikut kode program dalam bahasa Python untuk menampilkan teks โHello Worldโ Tampilan menggunakan Phycharm Case Sensitive Phyton memiliki karakteristik Case sensitive sehingga jika ada penulisan huruf besar maupun huruf kecil akan mempengaruhi hasil. Komentar pada Pyhton Komentar comment adalah kode di dalam script Python yang tidak dieksekusi atau tidak dijalankan mesin. Komentar hanya digunakan untuk menandai atau memberikan keterangan tertulis pada script. Komentar biasa digunakan untuk membiarkan orang lain memahami apa yang dilakukan script. atau untuk mengingatkan kepada programmer sendiri jika suatu saat kembali mengedit script tersebut. Untuk menggunakan komentar anda cukup menulis tanda pagar , diikuti dengan komentar Anda. Dibawah ini adalah contoh penggunaan komentar pada Python. Jika program diatas dijalankan maka yang akan tampil Hello World Budi 123 Tipe Data yang terdapat pada Python Tipe data merupakan suatu alokasi dari memori yang terdapat pada komputer yang dapat digunakan untuk menampung informasi. Python sendiri mempunyai tipe data yang cukup unik bila kita bandingkan dengan bahasa pemrograman yang lain. Berikut adalah tipe data dari bahasa pemrograman Python Berikut merupakan coding program yang menggunakan tipe data Boolean dan tipe data string. Saat program di running maka akan tampil gambar dibawah ini Dibawah ini merupakan coding dari tipe data integer, float, hexadecimal dan complex Dibawah ini merupkan implementasi dari coding diatas Dibawah ini merupakan coding program dari tipe data list, tipe data tuple dan tipe data dictionary. Dibawah ini merupakan implementasi dari coding tipe data list, tipe data tuple dan tipe data dictionary. Dibawah ini merupakan coding program dari penggunaan tipe data Dibawah ini merupakan implementasi dari penggunaan tipe data Bab 4 Python If..Else Adapun beberapa kondisi dari statement if dapat dituliskan dalam bentuk matematika seperti dibawah ini - Equal a == b - Not Equal a !=b - Kurang dari a b - Lebih dari sama dengan a >= b Sebagai contoh dari penerapan statement if a = 10 b = 50 if b > a print โb is greater than aโ elif elif merupakan dimana kondisi yang sebelumnya salah maka dilanjutkan dengan kondisi berikutnya. Adapun contoh dari program elif a = 7 b = 7 if b > a print โb lebih besar dari aโ elif a == b print โ a dan b samaโ Penggunaan Else dan Elif Else merupakan katakunci dari semua kondisi yang tidak sebelumnya Contohnya a = 100 b = 70 if b > a printโb lebih dari aโ elif a==b printโa dan b samaโ else printโa lebih dari bโ Penggunaan Else Dibawah ini merupakan suatu contoh kondisi dimana a lebih besar dari b a = 100 b = 23 if b > a print"b is greater than a" else print"b is not greater than a" Hasil eksekusi python Pernyataan If a = 100 b = 23 if a > b print"a is greater than b" hasil eksekusi python Pernyataan If Else a = 23 b = 100 print"A" if a > b else print"B" Hasil eksekusi Python Bab 5 Python While Loops !!!!!!!!!!!!Ada dua perintah loops di Python โข while loops โข for loops Contoh!While!Loop!!i!=!1!while!i!
Karenapython memiliki sintaks yang mudah dibaca manusia, memiliki banyak fungsi-fungsi matematis dan juga statistis yang cocok digunakan dalam bidang data mining, machine learning, AI dan lain sebagainya. Berikut ini materi belajar Python dasar (versi 3) untuk pemula, total terdapat 18 pertemuan:
Pandasis an open-source library specifically developed for Data Analysis and Data Science. The process like data sorting or filtration, Data grouping, etc. Data wrangling in python deals with the below functionalities: Data exploration: In this process, the data is studied, analyzed and understood by visualizing representations of data.
BelajarData Science Lewat Video 60 Detik! Yuk belajar data science melalui Program Youtube Team Algoritma, "60 Seconds Data Science.". Program ini akan mengupas data science secara singkat selama 60 detik bersama dengan Instructor Algoritma. Pembahasan yang dipaparkan juga akan beragam, mulai dari programming, statistics, hingga machine.